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Abstract 

Necessary and sufficient conditions are formulated 
for an n-dimensional arithmetic point group such that 
it may be the symmetry group of a d-dimensional 
quasiperiodic but not periodic, i.e. incommensurate, 
structure with Fourier modulus of rank n. Only point 
groups leaving invariant a d-dimensional subspace 
(the physical space) are considered. For an arithmetic 
point group describing an incommensurate structure, 
all equivalent choices for the internal space are related 
by the normalizer in G1 (n, 7/) of  the point group. 
Also, the conditions on arithmetic equivalence of two 
point groups allowing an incommensurate structure 
are discussed. These conditions yield a further parti- 
tion of the arithmetic crystal classes. 

0108-7673/93 / 020315-10506.00 

1. Introduction 

A well known problem in crystallography is the 
determination of nonisomorphic n-dimensional 
space groups. According to Ascher & Janner (1965), 
a space group G can be interpreted as a group 
extension ofZ n by a finite subgroup F(K)  c G1 (n, 7/), 
a faithful representation of a point group K c O(n). 
In this formalism, all nonisomorphic extensions of 
7/n can be obtained by taking one representative F ( K  ) 
of each arithmetic equivalence class, which consists 
of conjugate subgroups of G1 (n, 7/). Note that group 
extensions for arithmetically nonequivalent point 
groups are not isomorphic. For each representative 
arithmetic point group F(K) ,  all nonequivalent 
extensions can be determined. For this construction, 
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316 ARITHMETIC EQUIVALENCE OF POINT GROUPS 

knowledge of the presentation of the point group 
in terms of a set of defining relations satisfied by 
its generators is needed. Algorithms have been 
developed to construct a set of defining relations 
satisfied by the generators of an n-dimensional arith- 
metic point group (Wijnands & Thiers, 1992). 

Among the nonequivalent extensions, some might 
give isomorphic space groups. Two isomorphic 
extensions obtained from the same arithmetic point 
group are related by an element of the n-dimensional 
normalizer of F(K) in G1 (n, Z) (Ascher & Janner, 
1965; Janssen, Janner & Ascher, 1969; Fast & Janssen, 
1971). An algorithm has been developed to determine 
a generating set for the normalizer in Gl (n, 7/) of an 
n-dimensional arithmetic point group (Wijnands, 
1991). 

For n = 3, all nonisomorphic space groups have 
been tabulated (International Tables for Crystallog- 
raphy, 1989). For n =4,  all arithmetic equivalence 
classes and their normalizers and space groups are 
known (Brown, Billow, Neubilser, Wondratschek & 
Zassenhaus, 1978). All maximal finite subgroups of 
G1 (5, 7/) have been determined by Ryskov (1972a, b) 
and Billow (1973). For n =6,  7, 8, 9, all maximal 
irreducible subgroups of G1 (n, Z) have been deter- 
mined (Plesken & Pohst, 1977, 1980). 

Crystallography for dimensions higher than three 
is important for the description of incommensurate 
modulated structures (de Wolff, 1974; de Wolff, 
Janssen & Janner, 1981; Janner & Janssen, 1980a), 
composite incommensurate structures (Janner & 
Janssen, 1980b) and quasicrystals (Bak, 1985; 
Janssen, 1986). All these structures are quasiperiodic. 
A quasiperiodic structure in the physical space (called 
external space, position space or parallel space) can 
be obtained by intersecting this space with a lattice- 
periodic structure in a higher-dimensional embedding 
space. Because of the distinguished physical sub- 
space, the groups describing the symmetry of quasi- 
periodic structures are n-dimensional space groups 
satisfying appropriate additional requirements; these 
groups are called superspace groups. 

In this paper, for a given n-dimensional crystallo- 
graphic point group, we present a method to deter- 
mine all different distinguished subspaces that can 
play the role of the physical space. This comes down 
to determining all different sums of real irreducible 
representations carried by the orthogonal comple- 
ment of the physical space (called internal space or 
perpendicular space) such that the point group allows 
an incommensurate structure. For each such choice, 
the formalism is given of how to find all equivalent 
choices for the internal space. These ideas are based 
upon two papers. Janssen (1992) gave necessary con- 
ditions to be satisfied by a crystallographic point 
group (these conditions being proved to be sufficient 
in the case of a cyclic point group) in order to allow 
an incommensurate structure. [The case of a cyclic 

point group has also been described.by Baake, Joseph 
& Schlottmann (1991).] The other paper, that of 
Janssen (1991), gives conditions satisfied by two 
arithmetic point groups if they are arithmetically 
equivalent. 

In § 2, the conditions satisfied by a crystallographic 
point group in order to allow an incommensurate 
structure are formulated. In § 3, the problem of arith- 
metic equivalence of two arithmetic point groups 
describing quasiperiodic structures is discussed. The 
more severe conditions and the problem of arith- 
metic equivalence for modulated structures (a 
quasiperiodic structure for which main and satellite 
reflections in the diffraction pattern can be distin- 
guished) are discussed in § 4. Examples and results 
are presented in § 5. 

2. Condit ions  on incommensurate  structures 

Let K be an abstract finite point group generated by 
a set {k~ , . . . ,  ks}, denoted as K = ( k ~ , . . . ,  ks). Sup- 
pose there exists an integral faithful n-dimensional 
representation F(K) -- ( F ( k l ) , . . . ,  F(ks))c GI (n, Z) 
of K. Then F ( K )  is called an arithmetic point group. 
Note that on an appropriate basis there exists a faith- 
ful representation of K acting on the space R n as a 
group of orthogonal transformations. Therefore we 
may also consider K as a subgroup of O(n). 

In this section we formulate necessary and sufficient 
conditions to be satisfied by a given arithmetic point 
group F(K) such that it may be the symmetry group 
of an incommensurate structure. The physical 
dimension is denoted by d. A point group F(K) is 
nonmixing if there is a d-dimensional subspace of 
R" such that F(K) leaves this subspace invariant. If 
no such subspace can be found, then the point group 
is mixing. In this paper only nonmixing point groups 
are considered, since intensity spots for a d- 
dimensional diffraction pattern have never been 
observed to be related by a mixing point group 
(Janssen, 1992). We assume the character table of K 
and the irreducible representation matrices Fi(kj), 
for Fi(K) in the decomposition o f F ( K ) ,  to be known 
(throughout the paper, irreducible representations, 
'irreps', are considered as complex representations, 
'C-irreps', unless stated otherwise). To check whether 
F(K) is nonmixing, F(K) has to be decomposed into 
real irreducible representations, lt~-irreps. The reduc- 
tion goes as follows. 

Consider the decomposition of F ( K  ) into C-irreps, 

F(K)=C-~[Qm,F'(K)]C, C ~ G I ( n , C ) ,  (1) 

where mi is the multiplicity of the C-irrep Fi(K) in 
the decomposition. Each C-irrep FJ(K) is of one of 
three types. 

Type 1: FJ(K) is C-equivalent to an I~-irrep. We 
then assume that the irrep is given as an R-irrep. 
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Type 2: FJ(K) is not C-equivalent to an R-irrep, 
but it is C-equivalent to its complex conjugate 
FJ*(K). 

Type 3: FJ(K) is not C-equivalent to its complex 
conjugate FJ*( K). 

In the latter two cases, the corresponding R-irrep 
can be constructed using 

Fj  , B, B =  , (2) 
Lldj - - i l d j  

where ld, is the identity matrix of dimension dj, the 
dimension of FJ(K). It is easy to prove that F~ is 
irreducible over R. The Frobenius-Schur criterion 
(Frobenius & Schur, 1906; see, for example, Jansen 
& Boon, 1967) can be used to determine the type of 
a C-irrep FJ(K). 

Theorem 1. (Frobenius & Schur, 1906.) Let FJ(G) 
be a C-irrep of a finite group G of order [G[. Denote 
the character of F~(g) by x(g) ,  "v'g e G. Then 

l 1 if F j is potentially real 
1 (type 1); 

]G E x(g 2) -'- -1  if F j is pseudo-real (type 2); 

g~o 0 if F i is essentially complex 
(type 3 ). 

(3) 
Next, consider all choices for the d-dimensional 
external space, denoted by Ve, and its orthogonal 
complement Vt (recall that the point group is non- 
mixing), 

I"(K)=S-'r~(K)S 

= S-I [Q m,.~r~E( K)@ Q mj,,F{"( K) ] S, 
J 

(4) 

where S~G1 (n, R) and m~e (mit) denotes the multi- . i E  ' j l  -" • plicity of the R-~rrep F; (F;)  carried by the external 
(internal) space. For each such choice, one can check 
whether the point group allows an incommensurate 
structure as follows. Two or more R-irreps are called 
partners if each 7/-irrep carrying one of these R-irreps, 
also carries the other(s). 

Condition 1. A nonmixing point group of the form 
(4) allows an incommensurate structure with Fourier 
modulus of rank n if and only if 

(a) the external space carries a faithful (i.e. injec- 
tive) representation and at least one of the following 
two conditions is satisfied by each R-irrep F~ '~ carried 
by It,; 

(b) Vr carries an R-irrep that is R-equivalent jz 
to F ;  ; 

(c) Ve carries a partner of F{ 'I. 
Proof of condition 1. The ' if '  part. The case of cyclic 

groups has been proved by Janssen (1992). The argu- 
ments for the general case are analogous. 

Condition l(b) is based upon the following argu- 
ment. Consider the representation F(K)=F'(K)~) 
Fi(K) on a basis { ~ , , . . . ,  ~2d,}, where ~j is defined 
by (~j)i= 6u, the Kronecker delta, and di is the 
dimension of F~(K). Suppose the internal space Vt 
has basis {ed,+l,...,e2d,}. Then V1 carries F~(K). 
Consider as a basis for another V},the set {a~l+ 
/ 3 e d i + l , . . .  , Oledidr /3e2di}  , then F~(K) is also carried 
by V~. With a suitable choice of a and/3, one may 
obtain a lattice 7/" that does not have a d-dimensional 
sublattice in common with the external space. Then 
the structure described in the external space is incom- 
mensurate. Notice that the freedom in choosing a 
and/3 is allowed owing to the freedom to choose the 
coefficients in the transformation matrix S in (4). The 
matrix S is determined by linear equations satisfied 
by its n 2 coefficients. 

If condition 1(c) is satisfied then there is no basis 
in the external space VE such that the matrices are 
integer valued. Hence there is no d-dimensional 
lattice in Ve, whereas the n-dimensional space con- 
tains a lattice (since the n-dimensional point group 
is arithmetic). 

The 'only if' part. One can bring F(K) into the 
form F 1 ( K ) O F2( K ) by a matrix Q ~ G1 ( n, Q), where 
FI(K) contains all R-irreps of F(K) that are either 
I~-equivalent to an R-irrep carried by VE or to a 
partner of an R-irrep carried by VE. Both F~(K) and 
F2(K) can be chosen to be integer representations 
[if F i (K) ,  i =  1,2, carries an R-irrep, then it also 
carries its partners; therefore, Q can be chosen to 
be in G1 (n, Q)]. The reciprocal space carries the ad- 
joint representation F* (K)  = FI*(K)  G F2*(K). This 
means that the basis vectors in the space carrying 
F2*(K) are projected on the origin in Ve. Therefore, 
if this space is not empty, the rank of the modulus is 
smaller than n. 

Some remarks on condition 1. The problem of con- 
structing an integral representation for a given R-irrep 
is not trivial. If we restrict ourselves to cyclic point 
groups, then this construction assumes the knowledge 
of the invariants of the generating matrix (Janssen, 
1992). To check condition l(c), the easier problem 
has to be solved of whether or not there is an integer 
representation possible in the external and the inter- 
nal space. The solution is the knowledge that all one-, 
two- and three-dimensional arithmetic point groups 
for d <-3 do not need partners (since their real rep- 
resentations are all R-equivalent to integral rep- 
resentations). We restrict ourselves to d-< 3. 

Consider an n-dimensional arithmetic point group 
tha t  is not isomorphic to a one-, two- or three- 
dimensional arithmetic point group. If this point 
group satisfies condition l (a)  then it also satisfies 
condition 1(c). Otherwise, there should be a faithful 
two- or three-dimensional lR-irrep in V~ needing no 
partner in VI. This contradicts the fact that the point 
group is noncrystallographic in Ve. 
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The construction of a Fourier modulus of rank -< n 
follows from the reducing matrix. Let F ( K ) c  
G1 (n, 7/) act in the reciprocal space and let d be the 
physical dimension. There is a reducing matrix U 
such that U F ( K ) U - I = F , ( K ) .  Suppose for con- 
venience that F , (K)  acts on the basis {6~ , . . . ,~ ,}  
with Ve having as basis {6~, . . . ,ed}.  Then the n 
columns of U, projected on Ve and V~, form a Z- 
modulus of rank -<n (consisting of the first d and 
the last n - d  components of the n columns of U) 
transforming according to the integral representation 
F ( K )  under the action of the representation carried 
by Vz and I,'i, respectively (Kramer, 1987). Only if 
condition 1 is satisfied is the rank equal to n. In that 
case there exists an n-dimensional lattice-periodic 
structure having the constructed Fourier modulus 
(Bohr, 1924; Janssen, 1988). 

3. Arithmetic equivalence of point groups 

Two n-dimensional arithmetic point groups F(K)  
and F ' ( K  ) are called arithmetically equivalent if there 
is an intertwining matrix m ~ GI (n, 7/) such that 

m F ( K ) m  -~= F'(K).  (5) 

Then m induces an isomorphism 

~ o : F ( K ) ~ F ' ( K ) :  ~o[F(k)]=mF'(k)m -1. (6) 

To check whether such a matrix m can be found we 
can use a method that is very similar to a method 
used to determine the normalizer for an arithmetic 
point group (Wijnands, 1991). The algorithmic pro- 
cedure is the following. 

1. First, all point-group elements F'(k) ~ F ' (K)  are 
determined that have the same invariants as the point- 
group generators F(k~), . . . , F(ks) of F( K). 

2. Since the isomorphism ~ in (6) has the property 
that the invariants of F(ki) and of ~[F(ki ) ]  have to 
be the same, we can restrict ourselves to all combina- 
tions of images determined in step 1. For each combi- 
nation we proceed as follows. 

3. The task is to find a matrix m ~ G l ( n , Z )  
satisfying 

mF(k , )m- l=F ' (k , ) ,  l<_i<_s. 

The matrix m is determined by s × n 2 linear equations. 
Of all coefficients, some are independent; all other 
coefficients depend linearly on them. Now the 
independent coefficients are varied between two 
bounds. For each set of values of the coefficients, it 
is checked whether the resulting matrix is unimodular. 
If so, we have found an intertwining matrix and the 
two point groups are arithmetically equivalent; the 
procedure is then stopped. If not, we turn to the next 
set of values. 

4. If no matrix has been found, there are two 
possibilities. 

(a)  There does not exist an m ~ G1 (n, 7/). By deriv- 
ing the expression of the determinant of m, denoted 
by det (m), in terms of its independent coefficients, 
one can possibly prove from the factorization of this 
expression that integer values of the independent 
coefficients can never yield a value det ( m ) =  +1. In 
that case it has been proved that there does not exist 
such an m ~ GI (n, Z). 

(b) There does exist a matrix m of the desired 
form, but the required set of values for the coefficients 
exceeds the bounds we had put on the coefficients. 
Only if a matrix m has been found or if nonexistence 
of m c G l  (n, 7/) has been proved with help of the 
determinant expression is the analysis exact. 

5. We turn to the next combination in step 3. 
If quasiperiodic structures are considered, the 

problem is how to incorporate the role of the physical 
space as a distinguished subspace in the problem of 
arithmetic equivalence of arithmetic point groups. 

Condition 2. Two point groups F ( K )  and F ' ( K ) ,  
with given choice for the internal space V~ and V~, 
respectively, are arithmetically equivalent if and only 
if they are arithmetically equivalent as n-dimensional 
arithmetic point groups by a matrix m [(5)] that maps 
V, of F ( K )  on V~ of F'(K) .  

This condition is again based on the fact that VE 
(and Vl) is a distinguished subspace. Condition 2 
can be checked as follows. As described in § 2, the 
two point groups can be decomposed into II~-irreps: 

S -~ F ( K  )S = F , (K ); T -~ F ' ( K  ) T = F' ,(K ); 
(7) 

S, TeG1  (n, ITS), 

where S, T have the property that F , (k )=F ' r (k ) ,  
Vk e K. Suppose an intertwining matrix m satisfying 
(5) has been found. Then, 

( T - ' m S ) F r ( K ) ( S - l m - I T ) - - - F , ( K )  (8) 

or, after defining U -  T-lrnS, 

UF,( K ) U- '  = F,( K ). (9) 

Of course, the coordinates of a vector x ~ 1/1 depend 
on the choice of the basis or, equivalently, on the 
form of the representation. For fixed 1/i, let VI [ F ( K  )] 
denote the set of coordinates of the internal space V~ 
on the basis on which the representation has the form 
F(K) .  Analogously, V'~[F'(K)] denotes the set of 
coordinates of another internal space V~ on a basis 
on which the representation has the form F ' (K) .  
Then, VI[F(K)] =SV~[F,(K)]. Given a fixed basis 
on which the representation has the form F, (K) ,  the 
basis on which the representation takes the form 
F ( K )  is determined up to a basis transformation due 
to the freedom in the reducing matrix S in (7). If the 
isomorphism (5) is regarded as a basis transformation 
then VI[F(K)]=SVt[F , (K)]  is mapped by m on 
V~[F'(K)]=mSVI[Fr(K)]  using (7). and (8). If 
F'( K ) = F ( K  ), then the matrix m is in the normalizer 
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of F(K) in G1 (n, 7/), defined by 

N[F(K)] 

={meGl(n,Z)lmF(k)m-leF(K),  VkeK}.  
(10) 

Throughout  this paper, the normalizer refers to 
the normalizer in G1 (n, 7/). From the analysis about 
the arithmetic equivalence of two arithmetic point 
groups, an arithmetic point group F(K) with internal 
space V~ is arithmetically equivalent to F(K) with 
internal space V~ if and only if condition 2 is satisfied. 
If condition 2 is satisfied, then V~ and V~ are called 
equivalent choices for the internal space. (In fact, 
equivalent choices for the internal space refer to a 
permutation of the conjugacy classes due to an 
automorphism.) 

With respect to the partition in arithmetic con- 
jugacy classes, condition 2 gives rise to a further 
partition: each arithmetic conjugacy-class representa- 
tive gives a number of arithmetically nonequivalent 
point groups in the sense of condition 2. Now the 
normalizer can be decomposed into cosets with 
respect to the centralizer in G1 (n, 7/), defined by 

C[F(K)] 
= {me  GI (n, 7/)[mF(k)m -l= F(k) ,  Vk e K}. 

(11) 

Denote this decomposition by 

P 

N[F(K)]= U m,C[F(K)]. (12) 
i = 1  

Each coset miC[F(K)] corresponds to an auto- 
morphism q~," q~i[F(k)] = m~F(k)m7, ~, Vke K. A 
further decomposition can be made. The set of auto- 
morphisms {~0~,..., ~0p} forms a group A(K). A sub- 
group of A(K) is formed by all inner automorphisms 
~ 0 1 , . . .  , ~0q defined by q~i[F(k)]= mf(k)m7, ~, Vke 
K, m~eF(K). This further decomposition can be 
written as 

P/q 
N[F(K)]=[_J m~F(K)C[F(K)]. (13) 

i = 1  

Now the representation of F(K) carried by the inter- 
nal space VI is the same as the representation of 
mF(K)m -1 on mV1 for each me N[F(K)]. If m e  
C[F(K)] or if m e F ( K ) ,  then mV1 can be replaced 
by V~ [up to the freedom to vary 1,'i by the freedom 
in the matrix S in (7)]. For me C[F(K)] this is 
obvious from (11). For rn e F(K) we can use the fact 
that on the reduced basis the matrix S-~mS has the 
same block form as any other Fr(k)e Fr(K). Hence 
the internal space is left unchanged (up to the changes 
due to the freedom of the reducing matrix S). There- 
fore, if we want to determine all nonequivalent 
choices for the internal space, only the p/q coset 

representatives of the normalizer with respect to the 
subgroup F(K)C[F(K)] have to be considered. 

4. Modulated structures 

If a modulated structure of dimension d is defined 
as a quasiperiodic structure for which main and satel- 
lite reflections can be distinguished in the diffraction 
pattern, then there has to be a standard basis on which 
the point-group matrices are of the form 

[rE(K) r'(K)O _] r ( K ) :  LrM(K) =Gl(n,Z) (14) 

in direct space and of the form 

F,(K)= [FE*(oK) FM*(K) 1 F, . (KI]CGI(n,  7/) (15/ 

in reciprocal space. The representations F(K) and 
F*(K) are related (Janssen & Janner, 1987), 

r(k)=[r*(k- ')]  T, Vk~K, (16) 

where T means the transpose. Hence the point groups 
F E (K) and F * (K)  are crystallographic point groups 
in a d- and an ( n - d ) - d i m e n s i o n a l  space, respec- 
tively. 

Condition 3. An arithmetic point group F(K) 
allows a modulated structure with Fourier modulus 
of rank n if and only if 

(a) there is an SeGI(n,Z) such that SF(K)S -1 
is of the form (14) in direct space or (15) in reciprocal 
space; 

(b) FE(K) is a faithful d-dimensional representa- 
tion of K; 

(c) for each •-irrep carried by the internal space 
there is an R-equivalent 0~-irrep carried by the external 
space. 

Note that it follows from condition 3(a)  that no 
R-irrep carried by VE should need a partner in V~. 
Hence only arithmetic point groups that are crystallo- 
graphic in a d-dimensional space have to be con- 
sidered. If we restrict ourselves to physical dimen- 
sions d <-3, then all R-irreps are R-equivalent to Z- 
irreps. We assume these 7/-irreps to be known. So we 
have F~E(K),F{d(K)cGI(n,Z)in (4). 

Consider an arithmetic point group F(K). For 
each possible choice for the sum of 7/-irreps to be 
carried by 11'i, the analysis is as follows. The first prob- 
lem is to find a matrix S eG1 (n, 7/) that brings 
the point group onto a standard basis (condition 
3 a). The matrices F ( k i )  , r E ( k  i), r I (k i )  for each 
point-group generator ki are known for d, n -  d-< 4. 
Furthermore, the FM(ki)eMn_d.d(Z) satisfy the 
following additional conditions. The Fourier spec- 
trum corresponding to the basic structure has basis 
{ a * , . . . ,  a*} and the modulation can be described in 
terms of modulation vectors q l , . . . ,  qn-d. The set 
{ a * , . . . , a * ,  q l , . . . , q , - d }  forms a d-dimensional 
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Z-modulus of rank n. The vectors qj can be expressed 
in terms of the basic structure as 

d 

q j =  Y'. ~ a * ,  l<_j<_n-d. (17) 
i=1 

For actual systems, the coefficients tr(p, T)j~ depend 
on pressure and temperature. Furthermore, since the 
modulation vectors % can be chosen inside the basic 
unit cell, the coefficients of o- satisfy 

0_< o)~< 1, l<_j<_n-d,l<_i<_d. (18) 

Then F ~ ( k )  satisfies the relation (Janner & Janssen, 
1979) 

M,,_a,d(Z) ~ F M ( k) = o-r E ( k ) -  F '  ( k)o, V k ~ K ,  

(19) 

and the matrix o- can be written as 

o" = o'i+ o'~; o "i ~ M,,-a.d(R), o "~ ~ M,,-a.d(Q), (20) 

where cr ~ and o "~ satisfy 

o-TE ( k ) -  F '  ( k)tr' =O, 
(21) 

¢ r r E ( k ) - r ' ( k ) ¢ ~ = F M ( k ) ,  V k ~ K .  

These relations limit the possibilities of the entries of 
the block F M. If for each possible choice of FM(K) 
in (19) no S can be found and it can be proved that 
there does not exist such an S (by use of the technique 
described by the algorithmic steps in § 3) then condi- 
tion 3(a) is proved to be violated and F(K)  cannot 
describe a modulated structure. 

Condition 4. Consider two n-dimensional arith- 
metic point groups F(K)  and F'(K) with internal 
(external) space Vl (VE)and V~ (V~), respectively, 
with both Vt and V~- having dimension n - d. Denote 
the internal (external) space Vl.st (VE.st) on which a 
point group of standard form acts by its basis 
{ e d + l , . . . , e n } ( { e l , . . . , e d }  ). Then F(K)  and F'(K) 
are arithmetically equivalent, describing modulated 
structures, if and only if 

(a) there are matrices S, T ~ G I  (n,Z) such that 
F b ( K ) = S F ( K ) S  -1 and F'b (K)=TF ' (K)T  -~ have 
the same block form (14) or (15); 

(b) in direct space: if x~ Vt, then Sx~ Vt,~t; if 
x ~ V~, then Tx ~ Vz,~t; in reciprocal space: if x e VE, 
then Sx ~ VE, st ; if x ~ V~, then Tx ~ Ve, st; 

(c) there is an intertwining matrix m of the same 
block form as Fb(K) and F'b(K) satisfying 
mFb(K)m-~= F'b(K). 

Comparison with condition 1 shows that the condi- 
tions on arithmetic equivalence are stronger. The 
reason is the following. Since the Fourier spectrum 
consists of main and satellite reflections, main reflec- 
tions have to be mapped onto main reflections by a 
point-group element (Janner & Janssen, 1979). There- 
fore, S and T should be such that F~(K)  and FI(K)  
are Z-equivalent to Fn'(K) and Fr(K) ,  respectively. 

From now on, F(K)  and F'(K) are assumed to be 
in standard form. For the case that F' (K)= F ( K ) ,  
this means that the normalizer of a point group F(K)  
that is already in the standard form must have the 
same block form as F(K) .  

The method to determine the normalizer of an 
arbitrary arithmetic n-dimensional point group can 
easily be applied to a modulated structure with the 
point group in a standard basis. For an n-dimensional 
point group, each normalizer element m is determined 
by linear equations satisfied by its n 2 coefficients. For 
a modulated structure, m has to satisfy the additional 
condition that mij--0 for 1<- i_< d, d + l _ < j _  n in 
direct space and mij = 0 for 1 -<j -< d, d + 1 <- i -< n in 
reciprocal space. The procedure to determine a gen- 
erating set for (a subset of) the normalizer and the 
procedure to check whether the set generates the 
whole normalizer are then completely the same 
(Wijnands, 1991). Note that for the general case of 
a quasiperiodic structure there is no such restriction 
on the normalizer. 

5. Examples and results 

The first example is a point group isomorphic to 
D2 = (kl, k2), 

([i00 i] If °°I]) F(D2) = 1 0 -1  0 
0 -1  ' 0 1 " 

0 0 - 0 0 

(22) 

The representation F(D2)-2B~O2B3,  where B1 
and B 3 a r e  irreps of Klein's group, is already in 
reduced form: Fr(D2)= F(D2). The matrix S in (4) 
has the form 

S =  /3 6 0 ~GI(4,  R). (23) 
0 0 /., 

0 0 h 

Since D2 is Abelian, there is only one inner auto- 
morphism. The only outer automorphism candidate 
is: q~[F(kl)] = F ( k 2 )  , q~[F(k2)] = F(k~). A coset rep- 
resentative is 

0 0 0 1 

0 1 0 (24) 
m-- 1 0 0 " 

0 0 0 

The coset representative m in (24) corresponds to the 
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automorphism 

/ ~ r ~  I B~ 0 0 i 1 0 Bl 0 
0 0 B 3 
0 0 0 B 3 

mFrm- 1 

B 0 0 0 ] 

_ 0 B 3 0 0 

0 0 B1 0 

0 0 0 B1 

(25) 

Suppose the external space is three-dimensional. 
Then V~ can carry either B~ o r  B 3. Suppose V~ carries 
B~. Take {el} as a basis for VI(F,.). Then V,,(F)= 
SV~(Fr) is transformed by the matrix m to 
mSV1(mFrm -l) = mSVI(F~)= mVI(F), 

  rwithbasisIIil } 
fI!l} mV,,(F) with basis (26) 

With use of (25) we see that rnV~[mF(D2)m -1] and 
VI[F(D2)] carry the same sum of l~-irreps. Note that 
mF(D-,)rn -~ and F(D:,) are the same arithmetic point 
group. They are ordered differently due to the auto- 
morphism induced by m. 

It follows from (26) and from the fact that there is 
only one coset representative to be considered that 
there are two choices for the internal space carrying 
BI and they are equivalent. The analysis for V~ carry- 
ing B 3 is completely analogous, yielding two equiv- 
alent choices for I,'i, with the same basis vectors as 
in (26). In the case of a point group F(C2), generated 
by the first matrix in (22), the two choices for the 
internal space given in (26) are nonequivalent, since 
then there is no normalizer element relating them. 

The second example is the point group denoted 
by 7mm = (F(k~), F(k2))c GI (6, 7/), which is in the 
isomorphism class D7 (Janssen, 1990) 

7m/91 = 

0 0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

11 0000011 /  000,  
- 0 0 1 0 

' o o 1 0 0 

1 0 0 0 

0 0 0 0 

(27) 

The character table of D 7 is given below. 

O 7 e k I kl 2 kl 3 k2 

F ! I 1 1 1 1 

F 2 1 1 1 1 - 1  
(28) 

- r'3 2 2 cos (2r r /7)  2 cos (4 r r /7 )  2 cos (6r r /7)  0 

/ '4 2 2 c o s  (4r r /7)  2 c o s  (8r r /7)  2 c o s  (12~' /7)  0 

F s 2 2cos (6rr/7) 2cos (12rr/7) 2cos(18rr/7) 0 

It turns out that F.--.F,. = / - ' 3 t ~ / ' 4 ~ / - ' s ,  a l l  being C- 
equivalent to I~-irreps. The generators /-'J+2(kl) and 
FJ+2(k~), 1-<j-<3, can be chosen to be 

cos (2~j/7) -3 sin (27rj/7) 4 sin (2rrj/7) ] 
-5/2 sin (2~rj/7) cos (27rj/7) + 3 sin (27rj/7)J' 

The normalizer of 7ram has been determined 
(Wijnands, 1991). There are six (seven) point-group 
elements having the same invariants as the point- 
group generator k~ (k2). Therefore, there are 42 candi- 
dates for automorphisms. Since the inner automor- 
phism group of D7 has order 14, there are three outer 
automorphisms to be determined. One coset rep- 
resentative is 16, the two others are 

/1 2 

"-1 0 1 0 0 0 

- 1  0 1 0 -1  0 

- 1  - 1  1 1 - 1  0 

0 -1  1 1 -1  -1  

0 - 1  0 1 0 -1  

0 0 0 1 0 -1  

-1  

-1  

-1  
//3 --'~ 

-1  

-1  

0 

0 0 1 0 0 

1 0 1 0 - 1  

1 0 0 0 - 1  

0 0 0 1 -1  

0 1 0 1 -1  

0 1 0 0 -1  

(30) 

To have a nonmixing point group, the external space 
has to be two-dimensional (since we restrict ourselves 
to physical dimensions lower than four). Consider a 
subspace ~ 6 Z ) V r n  -~- V E ( r r )  with basis { e 2 m _ l , e 2 m } ,  

1 <- m - 3. Then the coset representative n2 transforms 
V~ to 1/3, I/2 to V~ and V3 to V2. Representative n3 
transforms V~ to 1,'2, V2 to Vs and V3 to V~. Hence, 
all choices for the internal space: VI = Vaw Vb, 
1 <- a < b -< 3, are equivalent. 

The third example is the point group F ( O  x C2) = 
m3m~) m3m, K = O x C2, for the incommensurate 
phase of wfistite, Fe~_xO, described by Yamamoto 
(1982). In the incommensurate phase, wiistite has a 
three-dimensional cubic fundamental cell with a 
three-dimensional modulation with arithmetic point 



322 ARITHMETIC EQUIVALENCE OF POINT GROUPS 

group 

F(K) = (r(kO, r(k2), r(k3)) 

0-1 0 0 0 0 0 1 0 0 0 0 
;oooo   o,ooo ° 

_ 0 1 0 0 0 0 0 0 iooo ! iOOOl i 
0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 

(31) 

There is only one choice for the basis of the internal 
space VI(F): {a61+/364, a62+f165, a63+/366}. In the 
incommensurate phase of wiistite, main and satellite 
reflections can be distinguished. Suppose we have 
two point groups, one with internal space V~(F) 
having as basis {6~, e2, 63}, the other with another 
internal space V'I(F) having as basis {64, 65,66}. First 
the two point groups have to be transformed to a 
standard form. In the standard form, the two point 
groups are identical and therefore the two choices 
for the internal space are equivalent. 

With the notation of Janner, Janssen & de Wolff 
(1983), wiistite has symmetry group Pm3m(a,  0, 0), 
meaning that Fe(K)  and F~(K) are full cubic point 
groups without centering and one of the modulation 
basis vectors can be chosen to be q~ = ( a ,  0,0) in 
coordinates with respect to the conventional unit cell. 
According to Table 1 of Janner, Janssen & de Wolff 
(1983), there are ten arithmetically nonequivalent 
(when considered as describing modulated struc- 
tures) point groups with full cubic symmetry in the 
external and internal space. The question is: which 
of these point groups are arithmetically equivalent 
when considered as describing quasiperiodic struc- 
tures? Since in all ten cases FE(K) and F~(K) are 
R-equivalent, there is only one choice for the internal 
space and the question comes down to finding all 
arithmetically equivalent point groups (regarded as 
n-dimensional point groups). First, the form of 
F~(k~) for the point-group generators k; in (31) has 
to be determined for the ten point groups under 
consideration. 

Suppose FE(K)=F~(K)=Pm3m.  Starting with 
an arbitrary matrix tr, we have, with use of (20) 

~ /3 /3 

O " =  ~ O~ 1~ E M 3 x 3 ( R ) ,  

0-<c~ < 1, fl = 0 o r f l  =½. (32) 

Hence, the two possible arithmetic point groups are 
Pm3m(a, 0, 0), with 

a 0 O] 

o "~= 0 a 0 ,tr r = O ~  FM(k)=O, V k e K  

0 0 a (33) 

and Pm3m(a, ½, ½), with the same t / b u t  

o "r= ½ 0 ½ ~ F M ( k l ) =  0 -1  0 (34) 

½ ½ 0 0 -1  0 

and FM(k2) = FM (k3) = 0 for the generators kl, k2, k3 
of (31). These two point groups are arithmetically 
nonequivalent when regarded as describing modu- 
lated structures. The same analysis shows that the 
eight other arithmetic point groups have FM(k)= 
0, Vk ~ K. First we try to find an intertwining matrix 
m for two point groups F ( K  ) and F'(K ), each having 
FM(K)=O, 

F " ( K )  

Suppose F~(K) is not Z-equivalent to Fr(K).  Then 
D = 0 because of Schur's lemma. Hence, B, C = +la ,  
otherwise det ( m ) =  O. Consequently, Schur's lemma 
tells us that Ft(K)-.-.FE'(K) and FE(K).--.Fr(K). 
Suppose F~(K) is Z-equivalent to F~'(K). Then D = 
±13. We have either (1) Fe(K)  ~ FE'(K),  so A = +13, 
or (2) FE(K) ¢-- FE'(K),  so A = 0. Then B, C = +13 
otherwise det ( m ) = 0 .  Consequently, F~(K) 
Fe'(K) and F ~ ( K ) - F I ' ( K )  but then FE(K) ~ 
FE'(K),  which contradicts the assumption that 
FE(K)TcF~'(K). Therefore, Z-equivalence for the 
nine point groups with FM(K)=O comes down to 
interchanging Fe(K)  and F~(K),  e.g. by the inter- 
twining matrix 

Pm3m(o~, a, a ) ~  Frn3m(a, 0, 0); 
[ 0  ~3]. lm3m(a, O, O) --. Pm3m(O, a, a); 

m---- 13 
lm3m(a, a, a) ~ Fm3m(O, o~, re). 

(35) 

The only other possible equivalence is between 
F(K) = Pm3m(a, ½, ½) and one of the other nine point 
groups. It turns out that F(K) is Z-equivalent to 
F'( K ) = Im3m( a, o~, ol ), 

mF(K)m-'=F'(K), 

m = 

1 1 1 0 - 1  - 1  

1 1 1 - 1  0 - 1  

1 1 1 - 1  - 1  0 

0 1 1 1 -1  -1  

1 0 1 - 1  1 - 1  

1 1 0 - 1  - 1  1 

(36) 

Hence there are six arithmetic equivalence classes 
splitting into ten arithmetic equivalence classes when 
the point groups are considered to describe modu- 
lated structures. 
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The fourth example is also an illustration that two 
arithmetically equivalent point groups describing 
quasiperiodic structures can be arithmetically non- 
equivalent when the point groups are to describe 
modulated structures. Consider the following two 
realizations of C2: (E -10 

F ( G )  = o 1 ; 

0 1 - 

F'(C2) = 1 0 

0 0 - 

(37) 

Then F(C2),F'(C2)-...A@2B. The basis vectors of 
the internal space VI(F) and V'~(F') are (a, 0,/3) r 
and ( % - %  8)r, respectively. Hence if F(C2) and 
F'(C2) are arithmetically equivalent as n-dimensional 
point groups, they are also arithmetically equivalent 
as point groups describing a quasiperiodic structure. 
There is an intertwining matrix 

, m r ( c ~ ) m - ~ = r ' ( c : )  (38) 

0 0 1 

m =  0 1 -1  

1 0 0 

and the point groups describing quasiperiodic struc- 
tures are arithmetically equivalent. 

Next, the problem of equivalence is studied for 
modulated structures. Suppose that main and satellite 
reflections can be distinguished. The problem is 
worked out in direct space. The first problem is to 
determine all possible choices for the block form (14) 
with FE(CE)=AGB and Ft(CE)=B. For F'(C2) 
there is only one possible representation: F I ( c 2 ) - -  
(-1).  For Fe(C2)  there are two ;E-inequivalent rep- 
resentations, 

Fe(C2)=([10 _01] ) and F t ~ ( C 2 ) = ( [  ~ 10] ) .  

(39) 

It follows from (18) and (19) that the only possibilities 
for the block form (14) are 

and 

pm(a, O)= -1 , 
0 - (Ea0 0]) 

pro(a, I) = 0 -1  0 , 
1 0 - 1  

(40) cm( a, O) = 0 , 
0 - 

all with standard basis vector (0, 0, 1) 7. Considered 
as three-dimensional arithmetic point groups, the first 
of these three point groups is arithmetically non- 
equivalent to the latter point groups, which are arith- 
metically equivalent. Hence there are at most two 
nonequivalent choices of the internal space for our 
point groups F(C2) and F'(C2) [recall that F(C2) 
and F'(C2) are arithmetically equivalent three-dimen- 
sional arithmetic point groups]. 

Now F(C2), with VI having basis vector (0, 0, 1)T 
describing a modulated structure, is arithmetically 
equivalent to pm(a, I): with 

0 1 0 ]  

S =  1 0 0 

0 0 1 

it holds that ([10 
Sr (C2)S- '=  0 -1  (41) 

1 0 - 

and S maps the basis vector (0, 0, 1) T onto (0, 0, 1) r, 
the standard basis vector of the internal space for 
pm(a, 1). Then F'(C2) with basis vector ( 1 , - 1 , 0 )  T 
for V'~(F') is also arithmetically equivalent to 
pm(a,  1), since F(C2) and F'(C2) are arithmetically 
equivalent as three-dimensional arithmetic point 
groups, and also mVt(F)= V~(F') from (38). 

In the same way it can be proved that I/1 (F) with 
basis vector (1, 0, 0) T and V'I(F') with basis vector 
(0, 0, 1) T are equivalent choices for the internal space, 
using (38). With use of (40) we see that both point 
groups are of type cm(a, 0). 

On the other hand, VI (F)  with basis vector (0, 0, 1 ) T 
and V'I(F') with basis vector (0,0, 1) r are non- 
equivalent choices for the internal space since 
mVI(F) has a nonzero component in the external 
space V'E(F'). For the same reason, VI(F) with basis 
vector (1 ,0 ,0)  T and V'I(F') with basis vector 
(1, -1 ,  0) T are nonequivalent choices for the internal 
space. 

Hence, for both point groups F(C2) and F'(C2) 
there are two arithmetic equivalence-class representa- 
tives. As representatives one can take F(C2) and 
F'(C2), both with (0, 0, 1) r as basis vector for the 
internal space. Then F ( C 2 ) = p m ( a ,  1) and F'(C2)= 
cm( a, 0). 

6. Concluding remarks 

A procedure has been described to verify whether a 
given arithmetic point group allows an incommensu- 
rate structure. If so, then for a given sum of real 
irreducible representations to be carried by the inter- 
nal space, the most general form for this internal 
space is determined. Equivalent choices for the inter- 
nal space can be given in the most general form by 
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using the action of the normalizer of  the point group. 
Two point groups, arithmetically equivalent as 
n-dimensional point groups, can be arithmetically 
nonequivalent when considered as describing quasi- 
periodic structures. This gives a further partition of 
the arithmetic crystal classes. 
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Abstract 

The possibility to determine not only the magnitude 
but also the sign of three-phase structure invariants 
from nonsystematic many-beam effects in convergent- 
beam electron diffraction (CBED) patterns is dis- 
cussed. From the full dynamical many-beam intensity 
expression it is clear that it is a principal difference 
between equivalent three-beam cases of opposite sign 
of the triplet phases. However, the difference and 
thus the ability to distinguish between the two cases 
depends strongly both on the relative magnitude of 
the structure factors involved and the specimen thick- 
ness for which the actual CBED discs are obtained. 
The largest differences are obtained for a weakly 
coupled three-beam case where the intensity in the 
line of  the primary reflection, which in this case 
coincides with the kinematical two-beam position, 

0108-7673/93/020324-07506.00 

has a distinct maximum or minimum at the three- 
beam condition depending on the sign of  the triplet 
phase. In a strong coupling case where the intensity 
in the primary-reflection line near the three-beam 
condition is split into two individual segments, the 
differences are generally less and are not so obvious 
and quantitative measurements are necessary to dis- 
tinguish the two cases of  opposite sign of the triplet 
phases. Calculated examples with respect to a nonsys- 
tematic three-beam example in the noncentrosym- 
metric InP are given. 

Introduction 

A general convergent-beam electron diffraction 
(CBED) method for quantitative determination of 
structure-factor magnitudes and phases from cen- 
trosymmetric as well as noncentrosymmetric crystals 
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